Research roundup: 6 cool stories we almost missed
The authors harvested fresh grapes and dried them for 28 days. Some were dried using an incubator, some were sun-dried, and a third batch was dried using a combination of the two methods. The researchers then added the resulting raisins to bottles of water—three samples for each type of drying process—sealed the bottles, and stored them at room temperature for two weeks. One incubator-dried sample and two combo samples successfully fermented, but all three of the sun-dried samples did so, and at higher ethanol concentrations. Future research will focus on identifying the underlying molecular mechanisms. And for those interested in trying this at home, the authors warn that it only works with naturally sun-dried raisins, since store-bought varieties have oil coatings that block fermentation.
DOI: Scientific Reports, 2025. 10.1038/s41598-025-23715-3 (About DOIs).
An octopus-inspired pigment
Credit:
Charlotte Seid
Octopuses, cuttlefish, and several other cephalopods can rapidly shift the colors in their skin thanks to that skin’s unique complex structure, including layers of chromatophores, iridophores, and leucophores. A color-shifting natural pigment called xanthommatin also plays a key role, but it’s been difficult to study because it’s hard to harvest enough directly from animals, and lab-based methods of making the pigment are labor-intensive and don’t yield much. Scientists at the University of San Diego have developed a new method for making xanthommatin in substantially larger quantities, according to a paper published in Nature Biotechnology.
The issue is that trying to get microbes to make foreign compounds creates a metabolic burden, and the microbes hence resist the process, hindering yields. The USD team figured out how to trick the cells into producing more xanthommatin by genetically engineering them in such a way that making the pigment was essential to a cell’s survival. They achieved yields of between 1 and 3 grams per liter, compared to just five milligrams of pigment per liter using traditional approaches. While this work is proof of principle, the authors foresee such future applications as photoelectronic devices and thermal coatings, dyes, natural sunscreens, color-changing paints, and environmental sensors. It could also be used to make other kinds of chemicals and help industries shift away from older methods that rely on fossil fuel-based materials.
Research roundup: 6 cool stories we almost missed Read More »










