Featured

Featured post

escapade1

NASA, Blue Origin Invite Media to Attend Mars Mission Launch

NASA and Blue Origin are reopening media accreditation for the launch of the agency’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission. The twin ESCAPADE spacecraft will study the solar wind’s interaction with Mars, providing insight into the planet’s real-time response to space weather and how solar activity drives atmospheric escape. This will be the second launch of Blue Origin’s New Glenn rocket.
Media interested in covering ESCAPADE launch activities must apply for media credentials. Media who previously applied for media credentials for the ESCAPADE launch do not need to reapply.
U.S. media and U.S. citizens representing international media must apply by 11:59 p.m. EDT on Monday, Oct. 13. Media accreditation requests should be submitted online to: https://media.ksc.nasa.gov.
A copy of NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact NASA Kennedy’s newsroom: 321-867-2468.
Blue Origin is targeting later this fall for the launch of New Glenn’s second mission (NG-2) from Space Launch Complex 36 at Cape Canaveral Space Force Station in Florida. Accredited media will have the opportunity to participate in prelaunch media activities and cover the launch. Once a specific launch date is targeted, NASA and Blue Origin will communicate additional details regarding the media event schedule.
NASA will post updates on launch preparations for the twin Martian orbiters on the ESCAPADE blog.
The ESCAPADE mission is part of the NASA Small Innovative Missions for Planetary Exploration program and is funded by the agency’s Heliophysics Division. The mission is led by the University of California, Berkeley Space Sciences Laboratory, and Rocket Lab designed the spacecraft. The agency’s Launch Services Program, based at NASA’s Kennedy Space Center in Florida, secured launch services under the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
To learn more about ESCAPADE, visit:
https://science.nasa.gov/mission/escapade
-end-
Abbey InterranteHeadquarters, Washington301-201-0124abbey.a.interrante@nasa.gov
Leejay LockhartKennedy Space Center, Florida321-747-8310leejay.lockhart@nasa.gov

NASA, Blue Origin Invite Media to Attend Mars Mission Launch Read More »

Banner20Our20Dynamic20Sun202025sm203

Helio Highlights: October 2025

The Sun and Our Lives

On a clear night, you might see thousands of stars in the sky. Most of these stars are dozens or hundreds of light years away from us. A light year is the distance a beam of light travels in a year: about 5.88 trillion miles (9.46 trillion kilometers). This means that for those stars we see at night, it takes their light, which travels at about 186,000 miles per second (or about 300 thousand kilometers per second), dozens or hundreds of years to reach us.

But in the daytime, we only see one star: the Sun. It dominates the daytime sky because it is so close – about 93 million miles (or 150 million kilometers) away. That distance is also called one astronomical unit, and its another unit of measurement astronomers use to record distance in space. But even if 1 astronomical unit seems like a long way, it’s still about 270 thousand times closer than Alpha Centauri, the next nearest star system.

The Sun isn’t just close – it’s also gigantic! The Sun is large enough to fit more than a million Earths inside it, and has more mass than 330 thousand Earths put together. Its light also provides the energy which allows life as we know it to flourish. For these reasons, the Sun is a powerful presence in our lives. We all have a relationship with the Sun, so knowing about it, and about the benefits and hazards of its presence, is essential.

Teaching About the Sun

Autumn is when most students in the United States return for a new school year after summer vacation. This back-to-school time offers a wonderful opportunity to reach students fresh off of a few months of fun in the Sun and capture their imaginations with new information about how our native star works and how it impacts their lives.

To that end, NASA conducts efforts to educate and inform students and educators about the Sun, its features, and the ways it impacts our lives. NASA’s Heliophysics Education Activation Team (HEAT) teaches people of all ages about the Sun, covering everything from how to safely view an eclipse to how to mitigate the effects of geomagnetic storms.

This often means tailoring lesson plans for educators. By connecting NASA scientists who study Heliophysics with education specialists who align the material to K-12 content standards, HEAT gets Heliophysics out of the lab and into the classroom. Making Sun science accessible lets learners of all ages and backgrounds get involved in and excited about the discovery, and instills a lifelong thirst for knowledge that builds the next generation of scientists.

Since 2007, NASA’s Living With a Star (LWS) program and the University Corporation for Atmospheric Research’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) have cooperated to offer the Heliophysics Summer School program for doctoral students and postdoctoral scholars. This program aims to foster heliophysics as an integrated science, teaching a new generation of researchers to engage in cross-disciplinary communication while they are still in the early days of their career.

One Way to Get Involved

As part of its efforts to increase awareness of the scientific and social importance of heliophysics, and to both inspire future scientists and spark breakthroughs in heliophysics as a discipline, the NASA Heliophysics Education Activation Team (NASA HEAT) is working on a slate of educational materials designed to get students involved with real-world mission data.

My NASA Data, in collaboration with NASA HEAT, has released a new set of resources for educators centered around space weather. My NASA Data supports the use of authentic NASA data as part of classroom learning materials. These materials include lesson plans, mini-lessons (shorter activities for quick engagement), student-facing web-based interactives, and a longer “story map,” which deepens the investigation of the phenomenon over multiple class periods.

These resources are designed to engage learners with data and observations collected during both past and ongoing missions, including the European Space Agency’s Solar Orbiter, NASA’s Parker Solar Probe and Solar Dynamics Observatory (SDO), and more.

One example of this is the educational material published to support outreach efforts focusing on the 2023 and 2024 American solar eclipses. These materials allowed learners to collect their own data on cloud and temperature observations during the eclipses with the GLOBE Observer Eclipse tool. This gave them the chance to participate in the scientific process by contributing meaningfully to our understanding of the Earth system and global environment.

New Ways to Engage

Groups like HEAT don’t just spark interest in science for the sake of inspiring the next generation of heliophysicists. Just like amateur astronomers can bring in a lot more data than their professional counterparts, citizen scientists can do a lot to support the same institutions that may have inspired them to take up the practice of citizen science. This can mean anything from helping to track sunspots to reporting on the effects of space weather events.

These enthusiasts are also adept at sharing knowledge of heliophysics. Even just one person inspired to buy a telescope with the right solar filter (international standard ISO 12312-2), set it up in a park, and teach their neighbors about the Sun can do amazing work, and there are a lot more of them than there are professional scientists. That means these amateur heliophysicists can reach farther than even the best official outreach.

Whether they take place in the classroom, at conferences, or in online lectures, the efforts of science communicators are a vital part of the work done at NASA. Just as scientists make new discoveries, these writers, teachers, audio and video producers, and outreach specialists are passionate about making those discoveries accessible to the public.

All of this work helps to inspire the scientists of tomorrow, and to instill wonder in the citizen scientists of today. The Sun is a constant and magnificent presence in our lives, and it offers plenty of reasons to be inspired, both now and in the future.

Additional Resources

Helio Highlights: October 2025 Read More »

iac2

NASA signs US-Australia Agreement on Aeronautics, Space Cooperation

At the International Astronautical Congress (IAC) taking place in Sydney this week, representatives from the United States and Australia gathered to sign a framework agreement that strengthens collaboration in aeronautics and space exploration between the two nations.
Acting NASA Administrator Sean Duffy and Australian Space Agency Head Enrico Palermo signed the agreement Tuesday on behalf of their countries, respectively.
“Australia is an important and longtime space partner, from Apollo to Artemis, and this agreement depends on that partnership,” said Duffy. “International agreements like this one work to leverage our resources and increase our capacities and scientific returns for all, proving critical to NASA’s plans from low Earth orbit to the Moon, Mars, and beyond.”
Australian Minister for Industry and Innovation and Minister for Science Tim Ayres said the signing builds on more than half a century of collaboration between the two nations.
“Strengthening Australia’s partnership with the U.S. and NASA creates new opportunities for Australian ideas and technologies, improving Australia’s industrial capability, boosting productivity, and building economic resilience,” Ayres said.
Known as the “Framework Agreement between the Government of the United States of America and the Government of Australia on Cooperation in Aeronautics and the Exploration and Use of Airspace and Outer Space for Peaceful Purposes,” it recognizes cooperation that’s mutually beneficial for the U.S. and Australia and establishes the legal framework under which the countries will work together.
Potential areas for cooperation include space exploration, space science, Earth science including geodesy, space medicine and life sciences, aeronautics research, and technology.
NASA has collaborated with Australia on civil space activities since 1960, when the two countries signed their first cooperative space agreement. The Canberra Deep Space Communication Complex played a vital role in supporting NASA’s Apollo Program, most notably during the Apollo 13 mission. Today, the complex is one of three global stations in NASA’s Deep Space Network, supporting both robotic and human spaceflight missions.
One of the original signatories to the Artemis Accords, Australia joined the United States under President Donald Trump and six other nations in October 2020, in supporting a basic set of principles for the safe and responsible use of space. Global space leaders from many of the 56 signatory countries met at IAC in Sydney this week to further their implementation.
As part of an existing partnership with the Australian Space Agency, Australia is developing a semi-autonomous lunar rover, which will carry a NASA analysis instrument intended to demonstrate technology for scientific and exploration purposes. The rover is scheduled to launch by the end of this decade through NASA’s CLPS (Commercial Lunar Payload Services) initiative.
NASA’s international partnerships reflect the agency’s commitment to peaceful, collaborative space exploration. Building on a legacy of cooperation, from the space shuttle to the International Space Station and now Artemis, international partnerships support NASA’s plans for lunar exploration under the Artemis campaign and future human exploration of Mars.
To learn more about NASA’s international partnerships, visit:
https://www.nasa.gov/oiir/

NASA signs US-Australia Agreement on Aeronautics, Space Cooperation Read More »

nasa october 2025 4k 3840x2160 1

Jupiter’s Volcanic Moon Io

During its close flyby of Jupiter’s moon Io on December 30, 2023, NASA’s Juno spacecraft captured some of the most detailed imagery ever of Io’s volcanic surface. In this image, taken by the JunoCam instrument from about 930 miles (1,500 kilometers) above the moon, Io’s night side [left lobe] is illuminated by “Jupitershine,” which is sunlight reflected from the planet’s surface.
This image is the NASA Science Image of the Month for October 2025. Each month, NASA’s Science Mission Directorate chooses an image to feature, offering desktop wallpaper downloads, as well as links to related topics, activities, and games.
Text credit: NASA/JPL–Caltech/Southwest Research Institute (SwRI)/Malin Space Science Systems (MSSS)Image credit: NASA/JPL–Caltech/Southwest Research Institute (SwRI)/Malin Space Science Systems (MSSS); Image processing: Emma Wälimäki © CC BY

Jupiter’s Volcanic Moon Io Read More »

ICI5b Integration

Making High Fidelity Fluxgate Cores for Space Science and Space Weather Missions

A NASA-sponsored team at the University of Iowa (UI) is restoring and advancing the nation’s capability to make high-fidelity magnetic field measurements needed to investigate space weather that can impact our communication and power grids on Earth and our assets in space.

Fluxgate magnetometers are widely-used space science and space weather instruments, but they depend on a legacy component—a ferromagnetic core—that was developed and manufactured for the U.S. Navy using technology that has been subsequently lost to the civilian community.

The UI team manufactures new fluxgate cores using a method that does not rely on legacy processes or materials and then integrates these cores into modern spaceflight magnetometers. The ferromagnetic cores are produced starting from base metal powders that are melted into custom alloys, rolled into thin foils, formed into the desired geometry of the fluxgate core, and artificially aged using heat to optimize their magnetic properties. The resulting cores are integrated into a complete fluxgate sensor ready for spaceflight applications.

Designing, prototyping, and manufacturing the cores, sensors, and paired electronics in house allows the team to explore new sensor geometries that are compatible with different missions. Most recently, the UI team developed a new core to be used in the Space Weather Iowa Magnetometer (SWIM). While the SWIM core is based on a core previously developed for the MAGnetometers for Innovation and Capability (MAGIC) Tesseract sensor that recently launched on NASA’s TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission the SWIM core is miniaturized and retains the same level of performance. The first flight opportunity for the SWIM fluxgate is on the University of Oslo’s ICI-5bis sounding rocket mission that is scheduled to launch in winter 2025/2026 from the Andoya Space Sub-Orbital range in Norway.

Fluxgate magnetometers sense the magnetic field by detecting the electromagnetic force (EMF) induced by the changing magnetic flux. Current is driven into the drive winding (the interior winding on the fluxgate core) creating a magnetic field. When the ferromagnetic material in the cores experiences the magnetic field, its relative permeability (the intrinsic magnetic property of the metal within the core) changes. As the relative permeability changes, a voltage is induced in the sense winding (the outer winding on the core). By knowing the amount of current driven into the core and the voltage that was induced in the sense winding, we can understand the magnetic field that the sensor is experiencing. Most in-space magnetometers are not located onboard the main body of the spacecraft; instead, they are placed on booms to ensure that the magnetic fields produced by the electronics and magnetic materials onboard the spacecraft do not interfere with the sensor.

The manufacturing process for these new cores is now well documented and ~90% of the cores produced have a noise floor that is comparable or better than previous legacy cores. Consequently, UI can reliably mass-produce cores for the SWIM payload and potential future follow-on missions. 

The new SWIM magnetometer design reflects three significant changes compared to the previous MAGIC instrument. The sensor has been simplified and shrunk. Its power consumption has been reduced without sacrificing measurement performance. Both these changes aid its accommodation on a magnetometer boom. In addition, the topology of the paired electronics in each magnetometer channel has been redesigned, which allows use of lower-performance parts that tolerate a higher radiation exposure.

Reduced Sensor size: The compact SWIM design reduces the sensor size by ~30% compared to the MAGIC sensor, with further reduction to the sensor mass likely as the mechanical design is optimized. The MAGIC Tesseract design used six cores whereas the SWIM sensor utilizes three smaller cores of the same geometry. Mass is a major performance driver for deployable boom design and vehicle dynamics. The SWIM sensor can also be manufactured with a lightweight carbon-composite cover (or the cover can be omitted) to achieve a sensor mass of ~110 g, which would enable the sensor to be easily accommodated on small satellite booms.

Reduced Power consumption: Using three smaller cores with improved metallurgy instead of six large racetrack cores reduced the power consumption of the SWIM sensor by a factor of two compared to the MAGIC sensor. Although this power reduction is modest compared to the total consumption of the instrument, it positively impacts the capability for boom deployment. Significant reduction in heat dissipation at the sensor minimizes the spot-heating of the deployable boom and reduces thermal gradients that can drive boom deformation/rotation, which impacts the pointing knowledge at the sensor. These improvements to the sensor have been achieved without impacting the measurement fidelity. In fact, prototype miniaturized SWIM race-track cores are outperforming the previous MAGIC cores due to their improved metallurgy.

Updated Electronics Topology: The MAGIC electronics use a traditional analog demodulator fluxgate and magnetic feedback design. This design requires high-performance components to be able to resolve small variations in large ambient magnetic fields. There are radiation limitations to these high-performance components making it difficult for the MAGIC design to operate in a high-radiation environment. To mitigate these issues, the SWIM design employs digital demodulation instead of analog demodulation and provides magnetic feedback via temperature-compensated, digital, pulse-width-modulation. This update to the electronics enables SWIM to potentially be used in long-duration and/or high-reliability operational applications such as radiation belt missions or planetary missions with long cruise phases.

The SWIM fluxgate design allows for more future applications in a variety of environments without sacrificing the performance seen on the MAGIC sensors. The UI team is looking forward to multiple upcoming flight opportunities for SWIM, including on the Observing Cusp High-altitude Reconnection and Electrodynamics (OCHRE) and ICI5bis sounding rockets.

Project Lead(s): Dr. David Miles, University of Iowa

Sponsoring Organization(s): Heliophysics Strategic Technology Office (HESTO)

Making High Fidelity Fluxgate Cores for Space Science and Space Weather Missions Read More »

hubble lmc n44c potw2536a

Hubble Surveys Cloudy Cluster

This NASA/ESA Hubble Space Telescope image released on Sept. 12, 2025, features a cloudy starscape from an impressive star cluster. This scene is in the Large Magellanic Cloud, a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa. With a mass equal to 10–20% of the mass of the Milky Way, the Large Magellanic Cloud is the largest of the dozens of small galaxies that orbit our galaxy.
The Large Magellanic Cloud is home to several massive stellar nurseries where gas clouds, like those strewn across this image, coalesce into new stars. Today’s image depicts a portion of the galaxy’s second-largest star-forming region, which is called N11. (The most massive and prolific star-forming region in the Large Magellanic Cloud, the Tarantula Nebula, is a frequent target for Hubble.) We see bright, young stars lighting up the gas clouds and sculpting clumps of dust with powerful ultraviolet radiation.
This image marries observations made roughly 20 years apart, a testament to Hubble’s longevity. The first set of observations, which were carried out in 2002–2003, capitalized on the exquisite sensitivity and resolution of the then-newly-installed Advanced Camera for Surveys. Astronomers turned Hubble toward the N11 star cluster to do something that had never been done before at the time: catalog all the stars in a young cluster with masses between 10% of the Sun’s mass and 100 times the Sun’s mass.
The second set of observations came from Hubble’s newest camera, the Wide Field Camera 3. These images focused on the dusty clouds that permeate the cluster, providing us with a new perspective on cosmic dust.
@NASAHubble

Hubble Surveys Cloudy Cluster Read More »